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A Galer kin Method on Nonlinear Subsets and

Its Application to a Singular Perturbation Problem

ABSTRACT

In the Rits-Galerkin method the linear subspace of the trial solutions is extended to a closed

subset. As an example, a class of so-called sublinear approximation and interpolation is developed.

* Some results, such as orthogonalization and minimum property of the error function, are obtained.

* A second order scheme has been developed for solving' the linear singular perturbation elliptic

problem.
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Error estimates are given for a uniform mesh size h:

2
if h< - e, where the constants C. and 0,i(i-0,1) all are uniformly bounded for small t.
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For the same accuracy, the present nonlinear scheme is one order of magnitude more than the

usual method used in the piecewise linear subspace. Numerical results for linear and semi-linear
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* 1. Introduction

The development of finite element methods has been successful in various fields. From a

* mathematical point of view, the method is one of extensions of Rayleigh-Rits-Galerkin technique,

([11], [15), [1], [17]). Usual finite element schemes, choosing piecewise polynomials as trial functions,

are very efficient when there are no steep gradients in the true solution. Otherwise, poor results

might occur. In order to get accurate numerical data, one may use adaptive mesh technique(e.g. [8])

or a higher precision scheme such as h-version and p-version respectively [3]. Beyond usual

. polynomials, rational elements(e.g. 1241) and exponential elements [91 have been introduced to enrich

the trial subspace to reduce number of parameters for a given precision. One thing in common

among these techniques is that they are all reduced to a discrete linear system if the original

differential equation is linear.

Nevertheless, our approach is quite different. To find a better discrete approximation of weak

solutions with steep gradients, we try to relax the limitation of replacing the continuous variational

problem only by a sequence of finite-dimensional subpaces. Hence, in this paper, we present an

extension of the finite element method from subspace to more general subsets and adopt the method

to solve singular perturbation problems (including linear and semi-linear) in one dimension. For

linear problems, our aim is to solve a small semi-linear system instead of a large linear system which

arises by using the usual trial subspace of piecewise polynomials for a given precision.

From a practical point of view, there are, at least, two questions which need to be answered

now. First, how to find a good non-linear approximation of a non-linear functional space which can

be devised especially for singularity problems. Secondly, how to solve the resulting discrete non-

linear system efficiently. This non-linear approximation should include conventional piecewise

polynomial and it is expected to be not too for, in some sense, from linear approximation in order to
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meet the theoretical demand (such as convergence and to keep some behaviors of the true solution)

and to satisfy the practical aim.

The approximation used in this paper is called piecetie mappial-polynomial or spline

mapping-polvnomial. It means that the approximation is of piecewise, and in each subinterval a

local one to one mapping is applied first, then a polynomial approximation is used in the mapping

plane. The final approximation is obtained by using the inverse mapping, and the whole

approximation function has some orders of smoothness according to various requirements. In

particular, it reduces the usual polynomial or polynomial-spline approximation if the mapping is

always equal to the identity mapping.

A large amount of attention has recently been focused on the difficult singular perturbation

boundary value problems. These problems arise from some different fields, for examples, boundary

layer or convective-diffusion type flows in fluid dynamics. Conventional methods applied to such

problem result in unrealistic oscillation and poor approximation unless the mesh length h is

excessively small. Some effects have been done by various authors using local higher order

polynomial approximation with some parameter, called 'Upwinding' methods, to match the true

solution better at the nodes. The method has been discussed by Christie and Mitchell [6J,

Barrett,Morton [4], Heinrich and el. [12], Babyska [21, etc. An "Exponentially fitted method"

developed by de Groen and Hemker j9). is to add a piecewise exponential term to enrich the

subspace of piecewise polynomial.

In section 2 and 3, we generalize respectively the usual Ritz and the Galerkin method from

linear trial subspaces to subsets, and derive some results such as orthogonalization and error

estimations. A brief discussion about 'sub-linear' operator and its approximation is given in section
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-* 4. In section 5, the semi-linear finite element technique is studied by solving singular perturbation

problems in one-dimension: -cu"+pu'+qu-f, u(O)==u()-O. The results show an improvement over

!: one more order precision than the corresponding scheme of using piecewise linear subspace and that

the constraint of mesh size h is relaxed from O(e2) to O(e). A linear and semi-linear test singular

perturbation problems are given in section 6. Computational result agree with the above theoretical

analysis.

Some research results on the same topic in two-dimensions will be reported separately [22).

q'



2. A Ritz method on subsets for sef-adjoint equations

Consider a self-adjoint elliptic linear differential equation

Lu - f (1)

a(u,v) - (Lu,v) is a positive quadratic form in a real Hilbert space H with an inner product (,) and

* a norm 11*11:

02 lul12 < a(u,u) <.0 11ull2, for all utH (2)

*where C1 and C2 are positive constants. It implies that
la(u,v)l _ C flull Ilvji, for all u,v e H. (3)

u is defined as a weak solution of (1) if it satisfies

a(u,v) - (f,v) for all v t H. (4)

It is well known that u is a weak solution of (1) if and only if u is the unique minimum solution of a

quadratic functional I, i.e.

l(u) - if I(v) - inf {a(vv) - 2(fv))
vd- vdi

As a well-known discresation, H in the variational problem (5) is replaced by a sequence of

finite-dimensional subspaces Vh contained in H:

I(uh) - inf I(v)

which is equivalent to the following weak solution

a(uh, vh) - (f, vh), for all v1' , h. (6)

Now we replace H in (5) by a sequence of closed subsets Sh with the same finite-dimensional

parameters. Let T be an one-to-one continuous mapping from an open convex set Vlh of Vh onto Sb:

* Tvh . Sh .

Definition 1: $15] The mapping T: V1h -> S' is differentiable in the open convex set Vh
if for each VeVl there is a Jacobian matrix T(v) such that

marxT() uhta



lim T(v+a) "  - T'(v)qll- 0, for each q c vlh. (7)" 0-- >0

* In particular, T' - T if T is a linear mapping.

S-i Consider a restricted variational problem on the closed subset Sh:

l(u) = inf (v) (8)S b

Since Sh is closed, so there exists a solution of (8) in Sh . If u. minimizes I over Sh, u.-Tw, then for

any .O and ti e Vi h

I l(us) K I(T(w+o09)). (9)

Let

T(w+&nj) - Tv + oTq + r(a)

. where T is positive-homogeneous and

x-) T(w+es1 ) -Tw - aTq

The right side of (9) is

,(u8) + 2&la(u,,Tq)- (f,Tq)) + 2[a(u.,,r(e)) - (f,i-(*))]

+ 02a(Ts,Tq) + 2oa(Tq,c(o)) + a((a),r.(&)) - I(&)

As a function of the parameter a, the fact that u, minimizes I over S requires lim 1'(a) - 0.
&-->0

Observing that

rdO) - 0, r.'(0) - (T'(Tlu,)- T)9,

and

o - I'(a)lo_>0 - 2 { a(u,,T ) - (fTei) + a(u,, r-'(0) )- (f, r.'(0)))

hence, it yields

a(u,,T'(T'u)ti) - (f,T'(T'u.)tj) for all q e Vh. (10)

Therefore

Theorem 2: If (i) V is a aubupace of H. (ii) Sh is a close subset of H. (iii) Tis an one-
Iq

1,
- • - - ++ + it - k : . ...
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to-one positive homogeneous and differentiable mapping from an open convex el V of TA

onto S": 7V - SA. Then (iv) There exists a solution u, of (8) and (10) holds.

The above Theorem shows that the nonlinear system (10) has at least a solution which

*minimizes the variational problem (8). Usually, it does not mean they are equivalent each other.

Because there are no guarantee of unique solution in general case. However, we have the following

* conclusion:

Theorem 3: If V, contains uA defined in (6), then for the mapping T which is sufficient

close to a linear mapping, i.e., JIT - T' fl is sufficient small, the nonlinear -sstem (10) has

unique solution which minimizes the variational problem (8).

Proof: In fact, (10) can be rewritten as

a(u, vh)_ (f, vh) + Q(uvh)

where

Q(u,vh) - a(u, [T-T'(Ilu)lvh) + (f, [T-T'(Tlu)Ivh))

Since there is unique solution in (6), hence, the above equations system also has unique

solution if lIT - T'II is sufficient small.

Now we suppose that the generalized coordinates (real parameters) of the subset Sh are ql"'"q.'

then the first variational equations of l(w) in Sh must be vanished

1 8 - a(w,- - (f, )- 0, for i - 1,...,n. (1I)
Y-8q ''q.Io

and the determinant of the second variational matrix at the point of the solution is positive
821

det( ) >O. (12)

Let {Bj) be a basis, then for each w(Sh

=a T'w + w, - B + where r'w E qA, w- w- T'w.

Substituting the above formulas into (11) yields
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E a(Bi,Bj)q, (f,Bi) + Gi(q) (13)

where G~ -f,Yq) -a( w E~ $-(jq4

Hence, the equations of the weak solution in subsets are different from ones in subspaces only by

the last extra term which tends zero when the subset Sh tends a subspace. Also, the system (11) can

be written as

a(w,B) - (f,B) + G'(q), where - ( w- a (14)

Hence, for each veV h, ignoring the extra terms, we get an approximate equations

a(u,,v) - (f,v) for all vwVh (15)

Because w in (14) corresponds to the unique solution of the variational problem (8) for theI

positive quadratic form a(u,u) restricted in the subset Sh, being the continuity of solutions with the

system, there also exists a solution u. of the system (15) in Sb, if the distance between Vh and Sh is

sufficient small. Geometrically, it is obvious. In fact, from (11) and (12), it means that, as a

hypersurface in the n dimension of (q1,...q), z - 8l/8qi is separated by a hyperplane z - 0 and they

have only one intersection point. Moving this hypersurface, there still exists a unique intersection

point if the moving distance is sufficient small.

For practical aim there is another approximation versions of (14): Find u8 ESh such that

a(u., u. - vh) - (f, u.- vh), for all vh e Vh. (16)

Suppose u. is the unique solution of (18). From (4), for any vh in Vh, a(u,u, - vh) - (f,u* vh),

subtracting (18) leads to a(u - ustus - vh ) - 0. Hence

a(u - vhu - vh) - a(u - u,,u - us) + a(vb. u3,v - u8).

Using (2), furthermore, for any vh in Vh,

[.

'I



02 Iju - U,112  a(U- u,u- u.) .a(u yh ~vh C1 jju -Vh112.

There are similar formulas for the case of (15). Thus, we have proved the following fundamental

theorem of the Ritz method on subsets which is an extension of the Theorem 1.1 in [21 for subspaces.

Theorem 4: Suppoe u. ia the unique solution of1(16) or (15) in a closed subset 5h, then

it satisfies the following properties:

(a) Minimum property

a(u -uU -U.) _r 'inf a(u _vh,u _v1), (17)S 1hdVk

or

a(u - Usu- u) - in a(u-u - u 8 -u vhi), (18)

and

or

where C is a constant.

(ii) Orthogonalization

a(u -u,,u, VI) - , for all vb in Vh. (21)

or

a(u - u,,vh)=0 for all vh in Vh. (22)

In practical view, as a system for the weak solution, (15) is more attractive than (18). And the

difference between them could be small if the subset is 'not far' from a subspace in some sense.
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3. A Glerkin Method on a closed nonlinear subset

The analysis in section 2 can be extended from the Ritz to the Galerkin method. Suppose that

the operator L in (1) is not seif-adjoint in which derivatives of odd order spoil the self-adjointness of

an elliptic equation and the associated quadratic functional 1(v) defined in (5) is not positive definite.

The problem now is to ind a stational point rather than a minimum of I(v). There are some results

on the existence of the weak solution (4), e.g. Babuska and Aziz [11, Strang and Fix [171. Let us

quote a few results of Galerkin Method first.

Theorem 6: Let H, and H. be tao real Hilbert spaces with inner products * ) and

(,*)H, respectively, (fv) be a continuous linear functional on H.. and a(u,v) a bilinear

form with three inequalities

(0) Ia(u,v)I -< C 1 1 v11 H2il for all u t Hi and v e H2, where C, < oo.

(ii) inf sup lau~ C2 > 0

(iii) sy Ia(u,v)I > 0, v sy 0

Thsen there exists one and only one weak solution uO of the functional equation Lou f

such that

a(u,v) - (f'v) for all v t1H2 (23)

and

A proof of this result can be found in 1J, theorem 5.2.1. Galerkin's method is the natural

discretization of the weak form. In general it involves two families of functions __a subspace Sh

of the solution space (or trial space) HI and a subspace Vh of the test space H.. Then the Galerkin

solution uh is the element of Sb which satisfies

a(uh, VI) .(f,vI) for all vl (Vh (24)

Since both Sh and Vh are linear subspaces, if (s.) is a basis for Sh and (v,) is a basis for Vh, the
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solution uh s qjs3 satisfies a linear system

A q - d (25)

where

A - ( a(s,v j )), d - (f,v,) (26)

If A"1 exists, there is a unique solution uh of (24). Also, there are some error estimations of the

Galerkin method, say, see Strang, Fix [17) and Aziz [1]. However, if there is an odd-derivative term

of the bilinear form with significant size, the Galerkin method is usually unsatisfactory. The

essential reason is that the approximation in linear functional space is not good enough in this

singular case. Probably, that is one way to overcome the difficulty is to extend the trial solution

space to a nonlinear subset.

Now, suppose that Sh which is a closed subset of H1 has the same number of freedoms with Vh

and that there exists a element uh ( Sh such that (24) still holds true. Being (23), subtraction yields

the following Lemma.

Lemma 8: For any subset of H1, if there eziste an element u t SA' which satisfie. the

relation (24), then with reepeet to the energj inner product, uk is the projection of u onto

S4, or, the error u -uh is ortholonal to 0

a(u -uh, vh 0) for all vh ( Vh (27)

Let the notation u, denote an interpolation of any u e H, in the subspace Vh. Since for any uj C Sh,

a(u -uh, u - uh) - a(u - uh, u - uj) + a(u - uh, ur-uh)

being (27),

a(U - Uh, uruh) - a(U- u, (Uruh)y(ujuh))

or

a(u - uh, u-uh) - a(u uh,(u- uh-(u- uhh)- a(u - uh, (u- uj-(u -uj)
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So, from the inequalities of Theorem 5

211u - uh, ~H CIlUl- uhIHflu - UjIl; + Illu'h(u uh)itI;}

* Therefore, we proved following error estimations.

Theorem 7: Suppose the conditions in Theorem 5 hold as well as (24), then on the closed

nonlinear aet S# the approximation solution uh of (27), if it exists, has following

estimates

Ilu - u n flu - uh - wll, (28)

flu - uhiliH _ - {In (Iu -u,1., + Ik(uruh)(uJ~uhh11tI;)
or

IluN- U 1 0 { (u2uh)" (u'ub)ll, +  in f I'III; + II(uua)- (u-ujll} (29)

Corollary 1. If the subset Sh coincides with the subspace Vh, then

jIu uhII K nf Iu- ujI1. (30)

(30) is just the result of the usual Galerkin method. Hence, (24) above is just a generalization of the

Galerkin method.

Corolla y 2. Let ujh be an interpolation of u on the subset Sh, then

C
Ilu - uh'IIH 2 "1{1u " UJhV- + It(u - uh)(u - uh)liiI; + + II(u _ UJh) 4 u _ ujih)jlI) (31)

0 2
The bounds (29) - (31) will play a central role in error analysis. It is clear that the subset Sh should

be so chosen as it can tends a denumerable dense set, as h tends zero, in the true solution space H,

as well as Vh in H2. In this case the limiting behaviors of the error in energy norm as h->0 depends

mainly on the approximation ability of the subset Sh.

Now we turn to discuss existence and uniqueness of solution of (24) briefly. It was considered in

section 2 for self-adjoint a(u,v). When a(u,v) is not self-adjoint, in terms of variational principles,

the weak solution (24) is equivalent to find the stationary point for the bilinear a(u,v) on Sh x Vh
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where ScH 1 and VcH2 are a closed approximation subset and a subspace with same finite parameters

respectively. Because the existence of the stationary point in the whole space H1 is assured by

theorem 5, hence, from geometric intuition, there is a stationary point in the sense of (24) for

sufficient small h, at least. Besides, if there is unique stationary point of (24) when the subspace Sh

coincides with the subspace Vh, then, the stationary point still exists if the subset Sh is 'very close' to

the subspace Vh. In general, we have

Theorem 8: Suppose there exists a subspace SLh with a basis {sJ in which the linear

system (24) has unique solution and T is a map from the subset Sh to the subepace SLh

such that for a basis {v.) of the test subspace 1A

p (A'J(G)) < 1 (32)

where the notation p denotes the spectral radius of a matrix, A defined in (*6), and J(G)

is the Jacobi Matrix of the vector G defined

G - ( a(uh -Tub), vi),

then the nonlinear system (27) exists unique solution.

Proof: Let Tuh E qj , since a(uh,v,) _ a(Tuh,v) _ a(u h - Tuh,vj) , from (24), (27)

becomes E a(si,v) - (f,v) + G,, In matrix form it can be written as

A q - d + G(q). (33)

Using the following 'simple' iterative procedure

A q(O) - d,

A q(k) - d + G(q(k 1)) (34)

which is a contraction mapping if the condition (32 ) is satisfied. Q.E.D.

Remark: (33) is very useful not only for proving existence of the solution, but also for

computing.

For practical view, hence, the first problem for using the generalized Galerkin method is to

construct an adequate nonlinear approximation subset as Sh above.
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4. 'Sub-linear' approximation and interpolation

Let T(u) be a real operator of u, where u(x) be a real function defined a given vector space X

and belong to a space S, T(u) belong to S, too.

Definition 9: An operator T(u) is called positive on the set X, if

T(u) > 0 for all u(x) > 0 and x e X (35)

Definition 10: An operator T(u) is called sublinear on the set X if it satisfies two
following conditions

(i) Positive-homogeneous

T(au) - aT(u) for all a > 0 in R and u t U, x t X (38)

(ii) Subadditive

T(u+v) ;_ T(u) + T(v) for all u,v e U and x e X

or

T(u+v) _< T(u) + T(v) for all u,v c U and x e X. (37)

Consider interpolation and approximation using sublinear piecewise positive operator. For simplicity,

let the set X - [0,1], and a partition A be given

A: 0 - X0 < X1 <... < xN - , h. - x. xj. (38)

Particularly, the linear positive operator, defined by Korovkin[13 is sublinear positive.

When

Bj(x) > 0, E Bj(x) - 1, for all x in 10,11 (39)

then

T(u) - E u(x,) B,(x) (40)

is positive. As an example, B. can be chosen as B-spline. Similar, if

B(t,x) >_ 0, for all t~x in 0,1], and 101 B(t,x) dt - 1, for all x in 10,1]. (41)

then
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T() -f 0 u(t) B(t,x) dt (42)

is positive too.

Lemma 11: If u, v, > 0, p > 1, B/z) is defined by (89), then

{ 3(u,+ V,)pB,(x )}  -eI E(tl)PB,(X)} lp+ { Ev,)pB,(X)} lP. (43)

The inequality direction will be opposite if p < I (p 34 0 ). In the limit case of p = 0,

(48) becomes

l(u+v)BPjx) __ l(u)X) + fl(vT ,(x) .  (44)

In each case the equality holds true if and only if the two sequences ( u ) and ( v ) are

proportional.

In fact, the above inequality is just the triangular inequality for the Ip space with weight. It can be

easily proved using a classical inequality, e.g., [5). Hence, the operator

T(u; p) - ( uJ)P B.(x) )/P (45)

is sub-linear positive.

For instance, if we take the basic functions (B,(x)) as B-spline and u. as an average of u(x) on

some nodes near xj, then (45) becomes a sublinear positive approximation operator of u(x) on [0,1), it

wil be a generalization of the well-known Schoenberg approximation.

Consider a kind of piecewise interpolations using the above semi-linear positive operator. For

x . x x, let t - ( x - x,.1 )/ hi, u0 - u(t)lj_ 0 , u - u(t)j,.l, p - p, and

T(u; p) { u0P (l-t) + niP t }l/P (p70) 0 < t < 1 (46)

T(u; 0) - Uo(It) u t (p - 0) 0 < t < 1 (47)

Obviously T(u; p) is piesewise sublinear and positive.

Theorem 12: The interpolatory operator Tyu; p) is piecewiae eublinear and positive, and
if u eC[O,iJ, for z f< z < x then for u(z) > 0 there is a remainder ezpression

u(x)-T(u;p) - x-xj.Xxj-xXu"- l-pj)u92/u)l. +O(h 3).



(xI 1 < < Xj (48)

Furthermore

Maxlux)T(u; PH_)I -al"(p )U2u + 0(h0). (49)

and

Max ju'(x).T'(u; p)I . _p),2 + 0(h2). (50)

Proof: Since T(u)=u for t-0 and t-1, using a well-known technique of error estimates in

Lagrange interpolation leads to (48) directly, so

u(x) - T(u; p) -(x-x 11,)(x1.xX u"-T") 1  C , (xi.,< f<x,).

from the Taylor expansion T" _ (1.pj)u,2/u + 0(h0). Hence, (49) and (50) follow.

Jin particular, if p - 1 everywhere, (48) becomes piecewise linear interpolation. Hence, in general

case, now the piecewise linear operator operates on uP instead of on u itself. In another words, (48) is

a generalized means replacing the arithmetic means with weights for the linear case (Jiachang Sun

[19]). Furthermore, if we choose the piecewise constant pj such that

j4L- (51)

the resulting interpolation (46) will have one more order of precision.

Theorem 18: If u e C41(0,1/, then for the piceefvse interpolation (46) with (51)

Maxu(').- T(')(u)l -< Cih3-aMaxtW(u)I + 0(h4-'). i-0,1,2.

IN - (U)1IL2 K. Ch3MaxIW(u)I + 0(h') (52)

where

31/2 1 11 U,2u (3
6(210)1/'~'-(3

Proof: Set j-1, p-p 1 . Applying the Taylor expansion yields

un" x1+xO u
p-I (-+ x) (- + +0(h 2),

2u

(up'lu') - up,2u2(l+X _ x) (n4 + 0(h2 ),
2 u

(up'u') 10 *up'2u'2 (-4" + 0(h).

Using these results, a straightforward computation leads to
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-xo+ UO u0  l- up + 4(xi-xxxo)(Ful)'

p2
+ -.(x1 .xXx-x0 )x 1-,2x+x.XuPIu')" + 0(h4)

6 p xi +xO XU-U t+ 4.-up + -(xx1 -x 0 )PO' " (h4 )
Xxx0  2.....

and

------------. P'U'U + ( . Xx)UP' u')' +
I ph 2
-(uP~u')"{(x1 .x)2 . (x1-xxx-x0) + (XdX) 2) + 0(h 3)
8

- U{ 1+ U, "_),,[(XI P-x0 x)4(x,-xXx-x,)]) + 0(h)

Hence

T(u;p) - (uP X~o 110P X I -LI/P

-~ ~ ( OP !1 10 Ii -x)uf U2(-4)+0h)
8 -~- 2 u ~ h)

Therefore 
2U

1 x+x 0  9'2 U
T(u;p) - u(x) - -(x 1-Xx-X 0X--- 2 x)- (-U." + 0(h4). (54)

Since the function

I x-OX2 -X)I - ~t(1-t)1.2tI
311/2 1 31/2 1 q31/2

has maximum value IMat tinT + jB-or I* -!H, hence we get (52) for 1-0. Similarly

T'(u(x);p) 1 U1 0 (u P +uP XiX(j-)/p

-Ulf I + Au(-"I(xx+(x)xp4(xixxxo)l ) + 0(h)
U

and

T"(u(x);p) - (Ip)U1P P2 h hO

- ~ ~. 0 U x )-(- + 0(h2 )) (I +

tuplul [xlx~uP+x-x~u~j+ 0(h3)).
2huP

Hence

T'(u(x);p) - u'(x) Tu-'ih - (Oxxx) (h3 ) (55)
U U
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(55) and (58) lead to the bounds (52) for i-1,2, respectively. In order to prove the last

estimate of (52), using (54) we ind

lIT - U1122 - f0 '1(Tu(x)) u(x)]2dx 6~AJ 1 2 1-)(.td hSA2i

Remark: It is interesting that the coefficients C0 , 1C2 in (53) are just as same as Cp1 C21C3

respectively in an error estimation which is for the cubic Hermite interpolation in the case Of neC 4 .

e.g. [23] (theorem 2.21). Hence, it is reasonable to call this kind of piecewise interpolation a quansi-

cubic-hermitian.

Corollary. If u&C, then the main orders in (52) still keep, however, the constants before the

orders are need to change now.

We may extend the interpolation form (48) further. In general, suppose (F.) is a sequence of

* piesewise one-to-one mappings in the subinterval Ix,,xlJ respectively. For a fixed j, say ,j - 1, let

F-Pwe define

T(u;p) - F(tF~u1 + (1-t)F'%) (57)

where the notation

F-lu1  F-lu(x)Ix. (i - 0, 1), t - xx
a h

It means that now the piecewise linear interpolation operator does operate on the map of Flu

instead of on u1 itself directly. In this sense, (48) is merely an example of (57) where Fu - u/.

Since T(u(t);F) - u(t) at two ends t-0 and t-I, it leads to

Lemma, 14: Lot u, F c z&~ z~, z), where k-S$ or 4, Flu ie any one-to-one mapping,

Sa adF > 0 then

I h2  d2 F-u(x), +0h)JIF- 1T(u) - P ul .T d X2 10+Oh,

4

4



d Ii d 2F-u(x)
1I-41F'T(u)-F'u) 10 .~ d 2  11 + 0(hkl-)-
dx 2 d

Theorem IS: Suppoe the hypothees of Lemma 14 hold, then there are remainder

formulae and error estimates

u(x) - T(u;p) - Y-ilx-x" d2 ft

I~) - dd2Flu(x) dF-'u(x) dF-'u(x)
u~) Tu~) -x~j)(-x(U(() U2dx2 (dx Y 4 dx Pl)

x1'" h 2  dF"l d (k),(8

1IT(u) - I1WooKTI 11 2  1Oqw dg gF.1 +0()

d h d2F-IU(x)
If(xT(Ou)IIlo, I !I dx2  goo g-"Isrii + 0(hk) (89)

Proof: The first remainder is obvious. The second one needs differential formulas in

implicit form

d2F(TF-'U(X)) ~d F ux) d2F U(X) (f10 3dF'(1

dX2  dx2

and the Mean value theorem

dTF-'u~xI10 F-lu1 -F-1  2. dF'u(x)
ft fh dx Pil

Hence, (58) is proved. From Lemma 14,

h2 d2 F'u(x)
F'T(u) K P. + 8H ' 110 + 0(hk)

Being monotony increase of F"

h2 d2F-lu(x)
T(u) -< F{F.'u + 9- d 110 + 0(hk))

using the Taylor expansion completes the proof of the theorem.

Furthermore

Theorem 16: Let u, F e C4 1zo, x1j, if there eziete a Ce (z0~l s uch that

dx2 'xm
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then

IIT(u) - uff" 1 d3 F'u(x) dF(F' u (0)
][ l'(.- ul=<TII -T ll k fl-II, + O(h4 ). (o

Beeidee, if f - (zl+za/)2, the efficent Tin the dominator of (60) can be improved by
th oefcin1''inA'6 .*

Corollory. T(u) - u for all x if and only if

d2F-'u(x)
dc2  -" 0,

* i.e., u(x) - F(Co+CIx), where C0 ,Cj -- constant.

Observing that the above piecewise interpolatory functions (46) and (57) all only belong to

nevertheless, we have also designed a piecewise sublinear positive interpolatory function which

belongs to C1 122].

4

4n m , ,i ki ,ia' ki . .. . . .. .
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5. An application to a singular perturbation boundary value problem

Consider the following boundary value problem

Lu - -e u" + p(x) u' + q(x) u - Ax),

u(O) - u(1) - 0 (61)

where e is a small positive parameter and p(x),qix) and f(x) are so sufficient smooth that their

derivatives until second order are uniformly bounded for all x in 10,11 and for all e > 0, besides, p(x)

Sp > 0 , q(x) >_. max(O, p'(x) ) on 10,1].

Let HM be Sobolev space of m-order with the norm

Hull. - ( JO ' , (D'u)? dx )1/2

and a(u,v) be the unsymmetric bilinear form

a(u,v) - 101 ( eu'v' + pu'v + quv ) dx (62)

With these notations the weak solution of (61) can be written as: Find u e H°I10,I] so that

a(u,v) - (f,v) for all v c H 110,1I (63)

where H [0,1J {vl v H10,1 and v(0) - v(1) -0

Existence and uniqueness of solutions to (63) follow from Theorem 5 using the following Lemma:

Lemma 17: 111/ There ezist* a conetant C>O which ie independent of t ouch that

Ia(u,v)l < C Iull1,, Ilvll, for all uv t H0
1

la(u,v)l K C Ilull,,, Ilvllsj,,, for all uv e HO, (64)

and

la(uu) > C-1 ilul 1,,,2, for all u e H°1  (65)

where

/lluI,, - {fo (Cu'%2 + u2)dx)1 / 2  (66)

Ilull,',,/ - ( 0' (Cu'4 + l' dX-, (87)
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Now we apply the generalized Galerkin method described in Section 3. Because the singularity of the

solution u(x) of (61 ) is only near x--l, the width of the boundary layer in which u(x) has large

derivatives is less than k times t, where k is a constant no matter how i is small, and on [0,1-ke] u(x)

and its some first derivatives are uniformly bounded.

Let Ah denote a partition of the interval 10,1] into N subintervals [x, ,x,], j-1,2,...N with

X0O=0,XN= l. For convenience, we will consider only the case of uniform mesh : xi-x,., - h, j -

1,2,...,N. Associated with A h we have two subsets with same freedoms of H*iJ0,1 ], one is the usual

piecewise linear space ph , another is called sPlh which is defined by that if ush(x) Sp Ih, then for

Xj._ x -< Xj, t - (x - xj.l)/h,

@ uj 1(1-t) + ujt if Iu, - u,.jl/h < dl

us h(x) { (68)

(uj~--c){(j--c)/(Uj.--c)}t - c Otherwise

where c is a parameter to be such chosen that it makes the formula to be well defined and to get

better approxination for the special problem, dl is a controllable constant.

For a fixed u(x), the interval [0,I1 now divides into two subintervals : 10,11 = Ir + I., where Ir

will be be called regular on which the frst derivative of u(x) is bounded by a control number, Is

- singular subinterval in which u'(x) could be very large.

Being Theorem 12, for fixed c and dl, SPIh consisted by all admissible elements of (68) is a

sublinear set of Hol, it is differs from the corresponding linear space Vh only where the element has

large first derivative.

Let {v } be the 'roof' basis of the test function space

6
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(x - xj. I)/h xj- l I x < xj

v h(x) = { (j - 1,2,.,N-1 ) (89)

(xi+l -x)/h xj.x<xj+n

For the sake of simplify we first suppose that the coefficients p and q in (61) are constant. In order

to get the integration (62) we need the following Lemma which can be convinced by part integration

Lemma 18: For ab > 0,

10=, foIaltbtdt -b-a tObic-a-d " I , k-1,2,... (70)

k f lalttkdt 10 b -

In particular

1 b- a

Log(b/a) Log(-b/a)
There are some inequalities in [21] about I0 and I1 which will be used later:

Lemma 19: Suppose a,b > 0, then

I a+b b+(ab)1/2-(ab)1/ 2 rain(1 ,a'1/4b 1/ 4) .< 11 _< --- max(l, (71)

2 4 b+a
with 'in' iff a - b.

The corresponding integral of linear interpolation to I is

a + (k+i)b
LIk ' f0lia(1.t)+bt]tkdt = (k+l )b_' (k+lXk+2)"

Therefore we have estimates

0 < LI - 10 (b/-al/2)2,

12 b1/ 2 ah/2Xb1/2-2a1/ 2) K LI K-I! . (bl/2-al/2X2b0/2-al/2), (b _a>0),

- .(a-b) K LI! - I . (al/4-bl/4Xa3/4+al/2bl/4+al/4b/2- 2b3/4), (a,_b>0),

sup ILl0 - 101 ,- , sup ILl1 - Il - (72)
O<ab ig 2 O< b ie

Integrating (82) from xJ.I to xj yields
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a(u h, r.h)-

fol(i.pt(c+u1 )I4(c+U.)tLg......t + lhq J 1{(c~u .)14'(c+u)t - c)tdt
c+uj. 1

- -4j~u1 )+~c+ 1  -,j1 I +
u i-u -d+ Pc +njLos((C+U 3 /( c+uj,))

+j + c ju1

hq.- Log((c+u 1)/(C+U,-1 ) )-(Log((c+u. )f(C+Ui)))

Similarly, integrating (82) from x, to x+

a(u.h, vj+b) -

J01(.c~ j+.(1t d + hq fol{(c+u 1)l4"(e+uj+,)t - c)tdt

fol(. ~ ~ ~ 11 -U.)Xcu)t~~,

uj+l-u=-4u-U 1 +1)- p(c + Ui) - +o(cu~1 /cu)

Log((c+ui)/(c+u 1 +1 ) )-(Log((C+Uj+ 1 )/(C+u 1 )))

For [x,-,, x 1 , I, a straightforward computation yields

a~~hv~) [2u,-u, 1 ou,+11 +.1) + i1 u1-u+4u) + . (73)

and for [x,.,, x,] e~

a(u. h Pvjh) . agu 8h, Vj-h) + gush, v. h)
U.~ - . U. - 5U.

* - ~jjl jlI +~ ~og(C+Uj+)/(c+u.) Log((c+u)/(c+ui, 1)

qh (CUjLIg((c u)/(+ ) ) + Log((c+u)/(c+u,,)

C uj - uj - U1 -* (4

or
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a(uh'v.h)-Iu~) + hPu~1 u (75)

where gi is the difference of the right parts between (73) and (74).

Denote t - a, substituting (73 ) and (75 ) into the generalized Galerkin method, i.e.

a( h, V.h) = (f,vh) for j 1,2 ,...N-1 (76)

leads to

(f,vjh) if j eI r

LhUh - (77)

(f,,jh). g(UIJ 1, UhJ, UhJ+,) if j l

where the left side

p h ( 2h - p h

Lhuh -- -q)U + )U -(- - -q)Uh j-

which is exactly the same to the scheme from usual piecewise linear subspace.

With matrix form it can be written as the special form as (33).

A U - d + Q(U) (78)

where A is a tridiagonal matrix A - ( aij)

-40+ 1W i>j
2hak -{2* + y-q i-j (79)

Denote the determinants of the first j and the last N-i principal determinants of A by Dj and DiN. 1,

respectively, set

D n, DjqiN-Bn- " j,N., -
Dj,N-1

Due to the recursion formula
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therefore

CLemma 20: If a k +hthen

+ )", orforll n < N-1.

On,N-1 (a + -gq)", for all n < N-1. (80)

Meanwhile, we have

Theorem 21: When

A-' (&i .) is a good discrete Green function in the following sense: A " is non-

negative and

a'l ij ;_ 0'1ij if i _j or K a'I ij1. if i < j (82)

6ql Proof: In fact, in this case A 1 - (a'.)

a".. - ( o+ - JDj.,DN.I.,/DN. if i>
h ..

Since A-1 exists, (78) can be written as

U - A'(d + Q(U)) (84)

Now we look for an esimate of I1A7'J(Q(U) )11, where J(Q) is the Jacobi matrix of Q. The main idea

of the derivation is the same to our another paper 121] in which the scheme based on a second order

semi-linear numerical differentiation formulas has the same form (84) with slight different A and

Q. Thus we only need to explain the outline of proofs which are different here. First, we prove that

the following important 'semi-linearity' of Q defined in 1211:

Lemma 22: For Q(u) defined by the difference between the linear scheme (78) and the

semilinear scheme (74), there ezits the following identities:
6

IJ(Q(u) Xu+c))j - {Q(u))j, if j < N-I. (851

Proof: Denote the nonlinear term of third term in the right of (74) by

F(u.l,uO,ul) -c + u0 - (c+uO)( Il+o),lc+U ) + Log(Ic+Uol/ C+U))) +
6
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bt(Log((c+u 1)/(C+u 0)))2 +(Log((C+iz 0)/(~ )))2'

aF -1 /( + 1) 1
~- ~ C+UO(Log((c+uO)/(c+u.i )) (Log((C+u)/(c+u 1,))9

2(u-u,)/(c+ui,)

(Log((e+u 0)/(c+u 1 ,)))3

aF 1 1

8U-0Lg((c+u)/(c--u 1)) + -Log((c+u0 )/(c+u 1 ))1

(cuo[ /(c + UO) + 1/(c + o

+ (Log((c+u 0)/(c+u - 1)))2  (Log(u)(c+a)/c)))2

c~(Log((c+u)/(c+u))? (Lg(u(c+u)(D2 ,)

CUo [(L+O ((C1)/(c C+))2 + (Log(()/(c(u 1)))21

2(u1-u0)/(c+u1 )

OF(+ +aF -C+u 0 ) + aF(c+u,) - Fuuu)

It has been proved in 121] that the second term in the right of (74) satisfies (85), due to the

linearity of the 'semi-linear' relation we get (85).

Since the singularity is only near x-1 and the width of the boundary layer is less than kt, using the

inequalities (72, (82). (81) and (83), similarly to [211 a straightforward computation yields

J(Q(u) )(u+c) - 40'-**f' 0Qn'***QN. 2'Q N-I)P
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(A1IJ(Q(u) )u), -a i + hqr

where

Therefore

Theorem 23: When the mesh size condition (81), i.e.,

[ 2 f+ )211/2).1 - 4 1 -(88)

holds as well as

3 p
k (.- (87)

8q
then the mapping A'Q(u) is contractive, in the meantime the semi-linear aytem (78) can
be solved by the following convergent 'simple' iteration

I A 0U1°1  d

A U(k) - d + Q(U(k'l)) (k - 1,2...) (88)

Remark: When c is small,in practice, the mesh condition (88) can be simplified by h < 2e
p

Now we consider error estimations. Let u be the true olution of (61), there exist a

* decomposition [Il)

u(x) - 'Y(W(X) + Zx))

W(x) - e'P(l)('1)/( - x - (llx)e'Pf')l (89)

where -y - lir lim u'(x)/p(1) is a constant bounded uniformly for all O<e<l, and€E->o z->I

IZ(x)l K. C, IZ'(xll -. c, Iz"lx)I K COl " a')

C is a constant independent of e, and O<#..p.

Set c in (89) equal to y which can be found in computing test. We proved in [21] that

Lemma 24: Let u be the true solution of (61), if h and e are of the same order, then

ju{J~lo - O(hJ), (j - 1,2,...)

q

"t
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u 2l !L(',Ilu )'Il~ _ 0(h-2). (90)

where c -i urnur eu '(z)/p(1).

Being (49) and (50), hence, for the interpolation function u of u(x) in SP 1h we have error

bounds

Ihb3. uIC, - 0(h), Ilu~b3 - ' '1 - 0(1). (1

Moreover, since the width of the boundary layer is the same order of if, keeping h as the same order

of etoo, it leads to

lluh3, - i10 - 0(hl/2), 11uhJ _ u111 _ 0(h'/ 2),

hluh3 - U11', - 0(h), 1u" 3 - utII1,/C - 0(h). (92)

Let H, and H2 be the Hilbert space with the norm (66) and (67), respectively. Using Lemma

* 17 and (31) yields

hIIJ" K
Ill - U -4l Jhh,,( /c + 1(u - Uh)(u. -h,~,, + ON~ -u.~h-u - nJbhiil1 ,j

* where the subscript I denotes the interpolation in the test space Vh- piecewise linear function

subspace. On the right side of the above inequality, the first term is the major one, others are of

higher power of h. Hence, being (92), we get the main error estimation for the scheme (76)

Theorem 25: If the mes~h size condition (86) holds, then

thu." - nIl,~ - 0(h). (93)

where coefficients before powers of h are uniformly bounded for all small e satisfying (87).

Applying the Taylor expansion and using the equation (81) itself and (72), substituting the true

solution u into the scheme (77) yields

h3
Lh~-(f,v~h) + 0( 2 ) + + ()+ qn"9) +

Lhu 0(h 12 p
if j ( ,r and
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Lhu (f,v.h) + O(h2) g(uj.l,u,uj+l) + Tr.(u),

Tri -0 -(3)_ P(,2 )' + 2qu") +
12 FT u

Using (90) and noting the fact that the width of the boundary layer in only ke, similar to [211 we get

IIA'1Tr(x)iloo - O(h) - (94)

furthermore

Iluh- uiUj1" 0(h), IIu, - u'1. - 0(1).

Similarly

Iush - u1jo - 0(h'-), jIu~h - u1, 1 - 6).

Summarizing the above results, finally we obtain the following theorem of error estimations

Theorem 26: For small c satisfying (87), when the mesh size condition (85) holds, then

the generalized Galerkin method on the subset (76) has one more order of precision than

its corresponding scheme of picewise linear subspace, i.e., in this case we have there ezist

constants C, CI,Co and C' which are umiformly bounded for all small e such that

Ilujh n u110 < -h', Ilugh - ui1  °

Ilu~h - ull( -<, Cah, Ilh " u'I1oo K C' . (9)

In the case of the general variable coefficients p and q, it can be proved that the above

conclusion still holds true for small e if two extra requires are satisfied:

2 1 1
h<- e, and -(qj.1+4qj+qj+i ) r.. -- (pj+j-pjj), j - 1,2,... (96)

theHO las ~ 2hj1 1)
the last one is a discrete form for the elliptic condition of q(x) p'(x).

As a matter of fact, we only need to point that, being smoothness of p and q, substituting their

piecewise linear interpolations into the integral form (62), (73) becomes

a(uh,vjh) - 1[2uu i-ui 1j + u jl(2p,+p,+ )+uj(pjfpj+ I)-uj, (2p,+p, 1)] +

S 1u(qj+q~ t)+u1 (qj 1+Oq+q +1)+u. l(qj+q)J +I)]ITj, J . jq .j Oh ) (7

Il
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The related tridiagonal matrix A -(a..) in (79) now is

1 h-[a + g(2pj+pj_,) - 2,(q,+c;_1)j, i-'j+l

2o - )(Pj,.) + ~ uj(98)

.[a- I h -(~q~),in-

The rest derivation is similar to 121], we omit it in detail.

For higher order schemes based on the interpolation described in section 4, the similar analysis

can be also done.
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6. Numerical Results

In this section, we give two examples to show how well the numerical results match the

conclusions in Theorem 25 and 26. In the following Tables, the notation N - 1/h, SL and L

represent the subset scheme (76) and its corresponding linear scheme, respectively, Er(Max) is the

maximum error with sip of the discrete solution and it has occupied on the node xM, Er(H 1,eps),

Er(HO) and Er(H1) are the approximation values of errors in H1,,H and H,, respectively. CPU - the

CPU time in terms of seconds. The Fortran program was run in double-precision, on a DEC-System

2060 computer. The iterative error for (88) is equal to I " .

EXAMPLE 1. A linear singular perturbation problem with constant coefficients

Lu - - tu" + u' + (1+ )u - f(x), in ( 0,1)

u(O) - u(1) - 0

where f(x) - (I+e Xa-b)x - ea - b, a - 1 + (1+0 /1, b - I + e 1 , with true solution (see. Figure 1)

u(x) - e"(l ( )('-x)/ + e' - a + (a-b)x

In our case, set the constant c - I in the scheme (68), see [211.

The results listed in Table 1-4 (or Figure 2-4) show that:

I. The iteration of (88) monotony converges if the ratio h/e < 2 , the results match with
the theoretical analysis above, the SL- scheme is much better than L-scheme with little
more CPU time cost ( about 20% for small i ) for the same mesh size h.

2. When 2 _< h/c _. 2.25, the iteration seems still convergent, but oscillation is occupied
4 now, and the error is getting more than the above estimates, CPU time is more, too.

3. If the ratio increases again, the iteration (88) does not converge.

4. For a given level of accuracy, the CPU time costs much less using the SL-scheme than
using the L-scheme, and more small e there is, more advantage the SL-scheme has. For
instance, given an admissible maximum error at knots . 0.005, their CPU time ratio
are about 0.3 : 1.1 and 3 : 15, for i - 0.01 and 0.001, respectively.

EXAMPLE 2. A semi-linear singular perturbation problem

Lu "--cu" + p(x)u' + q(x)u "-Ax,u), in (0,1)

4

I
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u() -u(1) - o

where

c
A(x,u) -a- b-(+ ){e-u+ u+(- b)x 1 ,

a ~e-(l+ )/A, bu-l+el,c - e2 (l+i )(1-z)/,

p(x)- , qxx)- I+

with the same solution as example 1.

In the semi-linear case, the advantage of SL scheme over L-scheme is *ore obvious than in

linear case, the results of SL-secheme still match the Theorem 25 and they are much better than L-

scheme with same conditions to obtain higher accuracy and save computer time both (see Table 5-7,

or Figure. 5-7).
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Table 1-1

SL: h/c = 1.S

N I [ Er(Naz) Ez(Bl,Ops) ErCID) Er(H1)H CPU
2 __7 _ I _1

25 0.920 i -0.5837D-02 0.3508D-01 0.1740D-02 0.2146D+001 0.09
50 0.960 I -0.6023D-02 0.2079D-01 0.1239D-02 0.1798D+001 0.16
100 0.970 I -0.4562D-02 0.1555D-01 0.7205D-03 0.1902D+001 0.50
200 0.985 I -0.1810D-02 0.8410D-02 0.2019D-03 0.1456D+001 1.07
400 0.993 I -0.1239D-02 0.5495D-02 0.1031D-03 0.13461-40 2.17
800 0.996 I -0.5259D-03 0.3000D-02 0.3223D-04 0.1039D+001 4.47

1600 0.998 I -0.3363D-03 0.1823D-02 0.1483D-04 0.8928D-011 8.56

Table 1-2 L: h/a - 1.5

4N xiN Er(ax) Er(Il,ops) Er(HO) Er(R1) I CPU

25 0.960 -0.8199D-01 0.1216D+00 0.1742D-01 0.7371D+001 0.04
50 0.980 -0.8112D-01 0.1183D+00 0.1223D-01 0.1019D)+011 0.06
100 0.990 -0.8070D-01 0.1167D+00 0.8620D-02 0.14250+011 0.33
200 0.995 -0.8048D-01 0.1159D+00 0.6084D-02 0.2004D+011 0.75
400 0.998 -0.8038D-01 0.1155D+O0 0.4299D-02 0.2827D+011 1.53
800 0.999 -0.8033D-01 0.1153D+00 0.3038D-02 0.3992D+011 3.23
1600 0.999 -0.8030D-01 0.11$2D+00 0.2148D-02 0.5641D+011 6.54

Tsble 2 SL: h/ - 1.75

N IN I Ur(0x) Er(EM.eps) Er(HO) EV(il) I CPUi 1 1
25 I 0.920 -0.1899D-01 0.4066D-01 0.4869D-02 0.2671D+001 0.11
50 I 0.960 I -0.6682D-02 0.2341D-01 0.1254-02 0.2187D+001 0.25

4 100 I 0.980 I -0.4199D-02 0.16430-01 0.6130D-03 0.2171D+001 0.51
200 I 0.990 I -0.1913D-02 0.1043D-01 0.2120D-03 0.1950D+00l 1.11
400 I 0.993 I -0.1162D-02 0.6063D-02 0.8863D-04 0.1604D+001 2.48
800 I 0.996 I -0.7638D-03 0.38171D-02 0.4342D-04 0.1428D+001 4.93

1600 | 0.998 I -0.3355D-03 0.2080D-02 0.1374D-04 0.1101D+001 10.03

I
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Table 3-1

SL: h/ = 2.0

N zX Er(Maz) Er(Hleps) Er(O) Et(R) I CPUI _ _ I _ _ _ _ _ _ _ _ _ _ _ __ I.
25 I 0.920 0.6469D-02 0.2969D-01 0.1423D-02 0.2097D+001 0.18
50 I 0.960 -0.7583D-02 0.2592D-01 0.1366D-02 0.2588D+001 0.36

100 I 0.970 0.3605D-02 0.1359D-01 0.3779D-03 0.1921D+001 0.66
200 I 0.990 -0.1235D-02 0.1032D-01 0.1033D-03 0.2064D+001 1.47
400 I 0.990 0.1452D-02 0.5153D-02 0.7843D-04 0.1457D+001 2.93
800 I 0.996 -0.6512D-03 0.4100D-02 0.3331D-04 0.1640D+001 5.81

1600 I 0.997 0.8136D-03 0.1324D-02 0.3186D-04 0.7485D-011 12.21

Table 3-2 L: hie - 2.0

N I x Er(Nax) Er(El.ps) Er(BO) Er(I) CP U

25 0.960 -0.1366D+00 0.1647D+00 0.2753D-01 0.1149D+011 0.03
50 0.980 -0.1360D+00 0.16140+00 0.1939D-01 0.1602D-011 0.21

100 0.990 -0.13561+00 0.1597D+00 0.1369D-01 0.2250D+011 0.37
200 0.995 -0.1355D+00 0.1589D+00 0.9668D-02 0.3171D+011 0.77
400 0.998 -0.1354D+00 0.1584D+00 0.6833D-02 0.4477D+011 1.55
800 0.999 -0.1354D+00 0.1582D+00 0.4830D-02 0.6326D+011 3.35

1600 0.999 -0.1354D+00 0.1581D+00 0.3415D-02 0.8942D+011 6.61

Table 4 SL: hie - 2.25

N Er(Max) Er(Ml.eps) Er(B0) Er(i) CPU

25 0.920 0.1618D-01 0.2526D-01 0.3461D-02 0.1877D+001 0.17
50 I 0.940 0.2635D-01 0.2103D-01 0.5016D-02 0.21671D+001 0.48

100 I 0.980 -0.4804D-02 0.1985D-o1 0.5968D-03 0.2976D+001 0.86
200 I 0.990 -0.1223D-02 0.1143D-01 0.9819D-04 0.2424D+001 1.46
400 I 0.985 0.1082D-01 0.7342D-02 0.9483D-03 0.2194D+001 3.86
800 I 0.988 0.2192D-02 0.4271D-02 0.9035D-04 0.18121D+001 8.98

1600 I 0.997 0.4134D-02 0.4955D-02 0.2310D-03 0.29701)+001 16.28
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Table 5-1

SL: he - 1.5

N xi Er(Iax) Er(El.eps) Er(BO) Er(N1) rcPU
25 0.920 -0.1930D-01 0.3845D-01 0.4679D-02 0.2337D+001 0.34
50 0.960 -0.5220D-02 0.1843D-01 0.1040D-02 0.1593D+00 0.98

100 0.970 -0.4529D-02 0.1436D-01 0.6564D-03 0.1757D+001 2.42
200 0.985 -0.1742D-02 0.7681D-02 0.1787D-03 0.1330D+001 5.40
400 0.993 -0.1201D-02 0.5141D-02 0.9504D-04 0.1259D+001 11.58
800 0.996 1 -0.5050D-03 0.2820D-02 0.2971D-04 0.9767D-011 23.48

1600 0.998 -0.3337D-03 0.1738D-02 0.1397D-04 0.8515D-011 47.13

Table 5-2 L: h/e - 1.5

N I iN I Er(Kax) Er(l,eps) Er(DO) r(RI) (CPU

25 I0.960 I-0.8244D-01 0.1217D+00 0.1773D-01 0.7377D+001 2.64
50 I 0.980 I -0.8125D-01 0.1184D+00 0.1231D-01 0.1020D+011 9.63

100 1 0.990 1 -0.8100D-0i 0.1167D+00 0.8685D-02 0.1426D+011 25.26
200 I 0.995 I -0.8059D-01 0.1159D+00 0.6102D-02 0.2005b+011 56.46
400 I 0.998 I -0.8043D-01 0.115$D+00 0.4305D-02 0.2827D+011 11.24
800 I 0.999 I -0.8035D-01 0.1153D+00 0.3041D-02 0.3992D+011 23.49

1600 I 0.999 I -0.8031D-01 0.11521+00 0.2149D-02 0.56410+011 48.78

Table 6-1 SL: h/ - 1.75

N I iN Er(sz) Er(Bl.eps) Er(BO) Rr(h1) CPU

25I 0.920 -0.1968D-01 0.39010-01 0.4724D-02 0.2562D+001 2.81
50 I 0.960 -0.6017D-02 0.2080D-01 0.1041D--02 0.1943D+001 1.14

100 I 0.980 -0.3879D-02 0.1503D-01 0.5494D-03 0.1986D+001 3.26
200 I 0.985 -0.3*31D-02 0.1136D-01 0.3500D-03 0.2124D+001 7.61
400 I 0.993 -0.1143D-02 0.5662D-02 0.8080D-04 0.14981+001 14.67
800 I 0.996 -0.7534D-03 0.3625D-02 0.4076D-04 0.1356D+001 29.78

1600 I 0.998 -0.3246D-03 0.1988D-02 0.12901-04 0.1052D+001 65.90

4i
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Table 6-2
L: h/s - 1.75

N iz Er(Max) Er(9,eps) Er(B0) Er(1) I CPU

25 I0.960 I-0.1163D+00 0.1453D+00 0.2433D-01 0.94809400 2.73
50 I0.980 I-0.1077D+00 0.1411D+00 0.1569D-01 0.1312D401 10.29

100 I0.990 I-0.11049+00 0.13979400 0.1145D-01 0.1842D+01 26.24
200 I0.995 I-0.10769400 0.13879400 0.7839D-02 0.25909401l 56.17
400 I0.998 I-0.10759+00 0.1382D+00 0.5538D-02 0.36559401 119.92
800 I0.999 I-0.10739+00 0.13809.00 0.3908D-02 0.5163D+01 140.12

1600 I0.999 I-0.1072D400 0.1379D+00 0.27609-02 0.72979401 496.64

Table 7-1 SL: h/s -2.0

NT zl Er(lax) Rr(N1,eps) WHOR0 ErCBl)

25 I0.920 I-0.1928D-01 0.3572D-01 0.4404D-02 0.25079400 3.42
50 I0.960 1-0.7551D-02 0.2358D-01 0.1238D-02 0.23549+00 10.95

100 I0.980 I-0.3771M-02 0.1592D-01 0.446SD-03 0.22519400 25.85
200 I0.985 I-0.2508D-02 0.8006D-02 0.2353D-03 0.16019+00 55.86
400 10.993 I-0.11819-02 0.6546D-02 0.83759-04 0.18519+00 116.21
800o 0.996 I-0.7179D-03 0.4017D-02 0.35389-04 0.16079+00 236.06

Table 7-2 L: h/s - 2.0

NT xl ErCMax) Er(M~ops) WHOI0 ErRil) ICPU

25 I0.960 I-0.14219+00 0.16539+00 0.2877D-01 0.11519+01 3.28
50 I0.980 I-0.13379+00 0.16129+00 0.19079-01 0.16010+01 11.33

100 I0.990 I-0.12559+00 0.15909+00 0.12649-01 0.22420+01 27.03
200 I0.995 I-0.13699+00 0.15909-+00 0.9775D-02 0.31739+01 58.68
400 I0.998 I-0.13379+00 0.15839+00 0.6743D-02 0.44749+01 124.43
800 I0.999 I-0.13239+00 0.15809+00 0.47159-02 0.63189D+01 248.85
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Figure 2 EXAMPLE 1: - .5

C0MPRRS0N EXRMPLE 1, H/EPS 1.5

1. OE+OO

* 1. OE-O

1. OE-02

1.OE-03

* 1.OE-04

2.419. 813. 1206. 1800.

I/H

1 LINEAR SCHEME MAXIMUM ERROR
2 LINEAR SCHEME HO NORM ERROR
3 LINEAR SCHEME Hi NORM ERROR
4 LINEAR SCHEME CPU TIME SEC.
5 SEMILINEAR SCHEME MAXIMUM ERROR
6 SEMILINEAR SCHEME HO NORM ERROR
7 SEMILINEAR SCHEME Hi NORM ERROR
8 SEMILINEAR SCHEME CPU TIME SEC.
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Figure 3
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Figure 4

SEMI-LINEAR EXAMPLE 1o H/EPS =-1.75
1.ODE+01 *

1. OE+001 -

1.OE-Q1

1. OE-03

1. 0E-04

25. '119. 813. 1206. 1600.

1/H

1 POSITION XM OF MAXIMUM ERROR
2 MAXIMUM ERROR
3 ER(H1.EPS)
'1 ERU-I03
B ER(Hi)
6 CPU SECONDS



C0MPRRIS0N EXRMPLE 2v H/EPS =2

1. OE+02

1.0E+01

1. OE.00

1. OE-01

1. OE-02

*1 1.OE-03

1. OE-04

* 1. OE-05
25.0 218.8 412.5 606.3 800. 0

1/H

1 LINEAR SCHEME MAXIMUM ERROR
42 LINEAR SCHEME HO NORM ERROR

3 LINEAR SCHEME Hi NORM ERROR
i LINEAR SCHEME CPU TIME SEC.
5 SEMILINEAR SCHEME MAXIMUM ERROR
6 SEMILINEAR SCHEME HO NORM ERROR
7 SEMILINEAR SCHEME HI NORM ERROR
8 SEMILINEAR SCHEME CPU TIME SEC.



L 45

Figuro 6
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Figuor 7

CPU C0MPRRIS0N EXRMPLE 2
250.0 **

6

166.7-

C-,)

U

83. 3

31
0.09 -

25.0 250.0

1/H

1 LINEAR SCHEME H/EPS =1.5
2 SEMILINEAIR SCHEME H/EPS = 1.5
3 LINEAR SCHEME H/EPS = 1.75
4 SEMILINEAR SCHEME H/EPS =1.75
5 LINERR SCHEME H/EPS = 2
6 SEMILINEAR SCHEME H/EPS=


